
Recall of basic concepts of the Python language

1. Using Python as a Calculator

1.1 Numbers
Expression syntax is straightforward: the operators +, -, * and / can be used to perform arithmetic;
parentheses (()) can be used for grouping. For example:

In [2]: 

In [3]: 

In [4]: 

In [5]: 

With Python, it is possible to use the ** operator to calculate powers:

In [6]: 

Out[2]: 4

Out[3]: 20

Out[4]: 5.0

Out[5]: 1.6

Out[6]: 25

2 + 2

50 - 5*6

(50 - 5*6) / 4

8 / 5

5 ** 2 # 5 squared

In [7]: 

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the
next interactive prompt:

In [8]: 

In interactive mode, the last printed expression is assigned to the variable _. This means that when you
are using Python as a desk calculator, it is somewhat easier to continue calculations, for example:

In [9]: 

In [10]: 

In [11]: 

In [12]: 

In [13]: 

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you
would create an independent local variable with the same name masking the built-in variable with its
magic behavior.

In addition to int and float, Python supports other types of numbers, such as Decimal and Fraction.
Python also has built-in support for complex numbers, and uses the j or J suffix to indicate the
imaginary part (e.g. 3+5j).

2. Text
Python can manipulate text (represented by type str, so-called “strings”) as well as numbers. This
includes characters “!”, words “rabbit”, names “Paris”, sentences “Got your back.”, etc. “Yay! :)”. They
can be enclosed in single quotes ('...') or double quotes ("...") with the same result

In [14]: 

Out[7]: 128

Out[8]: 900

Out[9]: 900

Out[11]: 12.5625

Out[12]: 113.0625

Out[13]: 113.06

Out[14]: 'spam eggs'

2 ** 7

width = 20
height = 5 * 9
width * height

tax = 12.5 / 100

price = 100.50

price * tax

price + _

round(_, 2)

'spam eggs' # single quotes

In [15]: 

In [16]: 

In [17]: 

In the Python shell, the string definition and output string can look different. The print() function
produces a more readable output, by omitting the enclosing quotes and by printing escaped and
special characters:

In [18]: 

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw
strings by adding an r before the first quote:

In [19]: 

In [20]: 

There is one subtle aspect to raw strings: a raw string may not end in an odd number of \ characters;
see the FAQ entry for more information and workarounds.

String literals can span multiple lines. One way is using triple-quotes: """...""" or '''...'''. End of lines are
automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line.
The following example:

Out[15]: 'Paris rabbit got your back :)! Yay!'

Out[16]: '1975'

Out[17]: '"Isn\'t," they said.'

First line.
Second line.

C:\some
ame

C:\some\name

"Paris rabbit got your back :)! Yay!" # double quotes

'1975' # digits and numerals enclosed in quotes are also strings

'doesn\'t' # use \' to escape the single quote...

"doesn't" # ...or use double quotes instead

'"Yes," they said.'

"\"Yes,\" they said."

'"Isn\'t," they said.'

s = 'First line.\nSecond line.' # \n means newline
s # without print(), special characters are included in the string

print(s) # with print(), special characters are interpreted, so \n produces new

print('C:\some\name') # here \n means newline!

print(r'C:\some\name') # note the r before the quote

In [21]: 

If you want to concatenate variables or a variable and a literal, use +:

In [23]: 

Strings can be indexed (subscripted), with the first character having index 0. There is no separate
character type; a character is simply a string of size one:

In [24]: 

Indices may also be negative numbers, to start counting from the right:

In [25]: 

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters,
slicing allows you to obtain a substring:

In [26]: 

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index
defaults to the size of the string being sliced.

Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

Out[23]: 'xthon'

Out[24]: 'n'

Out[25]: 'P'

Out[26]: 'tho'

print("""\
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to
""")

prefix = 'x'
prefix + 'thon'

word = 'Python'
word[0] # character in position 0

word[5] # character in position 5

word[-1] # last character

word[-2] # second-last character

word[-6]

word[0:2] # characters from position 0 (included) to 2 (excluded)

word[2:5] # characters from position 2 (included) to 5 (excluded)

In [27]: 

Note how the start is always included, and the end always excluded. This makes sure that s[:i] + s[i:] is
always equal to s:

In [28]: 

The function len() returns the length of a string:

In [29]: 

3. List
Python knows a number of compound data types, used to group together other values. The most
versatile is the list, which can be written as a list of comma-separated values (items) between square
brackets. Lists might contain items of different types, but usually the items all have the same type.

In [1]: 

In [2]: 

In [3]: 

In [4]: 

Lists also support operations like concatenation:

In [5]: 

Out[27]: 'on'

Out[28]: 'Python'

Out[29]: 34

Out[1]: [1, 4, 9, 16, 25]

Out[2]: 1

Out[3]: 25

Out[4]: [9, 16, 25]

Out[5]: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

word[:2] # character from the beginning to position 2 (excluded)

word[4:] # characters from position 4 (included) to the end

word[-2:] # characters from the second-last (included) to the end

word[:2] + word[2:]

word[:4] + word[4:]

s = 'supercalifragilisticexpialidocious'
len(s)

squares = [1, 4, 9, 16, 25]
squares

squares[0] # indexing returns the item

squares[-1]

squares[-3:] # slicing returns a new list

squares + [36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

In [11]: 

You can also add new items at the end of the list, by using the append() method (we will see more
about methods later):

In [12]: 

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

In [13]: 

In [14]: 

In [15]: 

In [16]: 

The built-in function len() also applies to lists:

In [17]: 

It is possible to nest lists (create lists containing other lists), for example:

Out[11]: [1, 8, 27, 64, 125]

Out[12]: [1, 8, 27, 64, 125, 216, 343]

Out[13]: ['a', 'b', 'c', 'd', 'e', 'f', 'g']

Out[14]: ['a', 'b', 'C', 'D', 'E', 'f', 'g']

Out[15]: ['a', 'b', 'f', 'g']

Out[16]: []

Out[17]: 4

cubes = [1, 8, 27, 65, 125] # something's wrong here
4 ** 3 # the cube of 4 is 64, not 65!

cubes[3] = 64 # replace the wrong value
cubes

cubes.append(216) # add the cube of 6
cubes.append(7 ** 3) # and the cube of 7
cubes

letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
letters

replace some values
letters[2:5] = ['C', 'D', 'E']
letters

now remove them
letters[2:5] = []
letters

clear the list by replacing all the elements with an empty list
letters[:] = []
letters

letters = ['a', 'b', 'c', 'd']
len(letters)

In [20]: 

In [21]: 

In [22]: 

3. First Steps Towards Programming
Of course, we can use Python for more complicated tasks than adding two and two together. For
instance, we can write an initial sub-sequence of the Fibonacci series as follows:

In [23]: 

This example introduces several new features.

The first line contains a multiple assignment: the variables a and b simultaneously get the new
values 0 and 1. On the last line this is used again, demonstrating that the expressions on the right-
hand side are all evaluated first before any of the assignments take place. The right-hand side
expressions are evaluated from the left to the right.
The while loop executes as long as the condition (here: a < 10) remains true. In Python, like in C,
any non-zero integer value is true; zero is false. The condition may also be a string or list value, in
fact any sequence; anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison operators are written the
same as in C: < (less than), > (greater than), == (equal to), <= (less than or equal to), >= (greater
than or equal to) and != (not equal to).
The body of the loop is indented: indentation is Python’s way of grouping statements. At the
interactive prompt, you have to type a tab or space(s) for each indented line. In practice you will
prepare more complicated input for Python with a text editor; all decent text editors have an auto-
indent facility. When a compound statement is entered interactively, it must be followed by a blank
line to indicate completion (since the parser cannot guess when you have typed the last line). Note
that each line within a basic block must be indented by the same amount.
The print() function writes the value of the argument(s) it is given. It differs from just writing the
expression you want to write (as we did earlier in the calculator examples) in the way it handles

Out[20]: [['a', 'b', 'c'], [1, 2, 3]]

Out[21]: ['a', 'b', 'c']

Out[22]: 'b'

0
1
1
2
3
5
8

a = ['a', 'b', 'c']
n = [1, 2, 3]
x = [a, n]
x

x[0]

x[0][1]

Fibonacci series:
the sum of two elements defines the next
a, b = 0, 1
while a < 10:
 print(a)
 a, b = b, a+b

multiple arguments, floating point quantities, and strings. Strings are printed without quotes, and a

In [24]: 

The keyword argument end can be used to avoid the newline after the output, or end the output with a
different string:

In [25]: 

4. Control Flow Tools

4.1 if Statements

In [1]: 

4.2. for Statements
The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than
always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability
to define both the iteration step and halting condition (as C), Python’s for statement iterates over the
items of any sequence (a list or a string), in the order that they appear in the sequence. For example
(no pun intended):

In [2]: 

The value of i is 65536

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

Please enter an integer: 2
More

cat 3
window 6
defenestrate 12

i = 256*256
print('The value of i is', i)

a, b = 0, 1
while a < 1000:
 print(a, end=',')
 a, b = b, a+b

x = int(input("Please enter an integer: "))

if x < 0:
 x = 0
 print('Negative changed to zero')
elif x == 0:
 print('Zero')
elif x == 1:
 print('Single')
else:
 print('More')

Measure some strings:
words = ['cat', 'window', 'defenestrate']
for w in words:
 print(w, len(w))

4.3. The range() Function
If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It
generates arithmetic progressions:

In [3]: 

The given end point is never part of the generated sequence; range(10) generates 10 values, the legal
indices for items of a sequence of length 10. It is possible to let the range start at another number, or to
specify a different increment (even negative; sometimes this is called the ‘step’):

In [4]: 

To iterate over the indices of a sequence, you can combine range() and len() as follows:

In [5]: 

4.4. break and continue Statements, and else Clauses on Loops
The break statement breaks out of the innermost enclosing for or while loop.

A for or while loop can include an else clause.

In a for loop, the else clause is executed after the loop reaches its final iteration.

In a while loop, it’s executed after the loop’s condition becomes false.

In either kind of loop, the else clause is not executed if the loop was terminated by a break.

This is exemplified in the following for loop, which searches for prime numbers:

0
1
2
3
4

Out[4]: [-10, -40, -70]

0 Mary
1 had
2 a
3 little
4 lamb

for i in range(5):
 print(i)

list(range(5, 10))

list(range(0, 10, 3))

list(range(-10, -100, -30))

a = ['Mary', 'had', 'a', 'little', 'lamb']
for i in range(len(a)):
 print(i, a[i])

In [6]: 

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)

When used with a loop, the else clause has more in common with the else clause of a try statement
than it does with that of if statements: a try statement’s else clause runs when no exception occurs, and
a loop’s else clause runs when no break occurs. For more on the try statement and exceptions, see
Handling Exceptions.

The continue statement, also borrowed from C, continues with the next iteration of the loop:

In [7]: 

4.7. Defining Functions
We can create a function that writes the Fibonacci series to an arbitrary boundary:

In [8]: 

2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

for n in range(2, 10):
 for x in range(2, n):
 if n % x == 0:
 print(n, 'equals', x, '*', n//x)
 break
 else:
 # loop fell through without finding a factor
 print(n, 'is a prime number')

for num in range(2, 10):
 if num % 2 == 0:
 print("Found an even number", num)
 continue
 print("Found an odd number", num)

def fib(n): # write Fibonacci series up to n
 """Print a Fibonacci series up to n."""
 a, b = 0, 1
 while a < n:
 print(a, end=' ')
 a, b = b, a+b
 print()

Now call the function we just defined:
fib(2000)

The keyword def introduces a function definition. It must be followed by the function name and the
parenthesized list of formal parameters. The statements that form the body of the function start at the
next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the
function’s documentation string, or docstring. (More about docstrings can be found in the section
Documentation Strings.) There are tools which use docstrings to automatically produce online or
printed documentation, or to let the user interactively browse through code; it’s good practice to include
docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function.
More precisely, all variable assignments in a function store the value in the local symbol table; whereas
variable references first look in the local symbol table, then in the local symbol tables of enclosing
functions, then in the global symbol table, and finally in the table of built-in names. Thus, global
variables and variables of enclosing functions cannot be directly assigned a value within a function
(unless, for global variables, named in a global statement, or, for variables of enclosing functions,
named in a nonlocal statement), although they may be referenced.

It is also possible to define functions with a variable number of arguments. There are three forms,
which can be combined.

4.7.1. Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function
that can be called with fewer arguments than it is defined to allow. For example:

In [10]: 

This function can be called in several ways:

giving only the mandatory argument: ask_ok('Do you really want to quit?')

giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2)

or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

5. Data Structures
The list data type has some more methods. Here are all of the methods of list objects:

list.append(x) Add an item to the end of the list. Equivalent to a[len(a):] = [x].
list.extend(iterable) Extend the list by appending all the items from the iterable. Equivalent to
a[len(a):] = iterable.
list.insert(i, x) Insert an item at a given position. The first argument is the index of the element
before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

def ask_ok(prompt, retries=4, reminder='Please try again!'):
 while True:
 ok = input(prompt)
 if ok in ('y', 'ye', 'yes'):
 return True
 if ok in ('n', 'no', 'nop', 'nope'):
 return False
 retries = retries - 1
 if retries < 0:
 raise ValueError('invalid user response')
 print(reminder)

list.remove(x) Remove the first item from the list whose value is equal to x. It raises a ValueError if
there is no such item.
list.pop([i]) Remove the item at the given position in the list, and return it. If no index is specified,
a.pop() removes and returns the last item in the list. (The square brackets around the i in the
method signature denote that the parameter is optional, not that you should type square brackets
at that position. You will see this notation frequently in the Python Library Reference.)
list.clear() Remove all items from the list. Equivalent to del a[:].
list.index(x[, start[, end]]) Return zero-based index in the list of the first item whose value is equal
to x. Raises a ValueError if there is no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit
the search to a particular subsequence of the list. The returned index is computed relative to the
beginning of the full sequence rather than the start argument.
list.count(x) Return the number of times x appears in the list.
list.sort(*, key=None, reverse=False) Sort the items of the list in place (the arguments can be used
for sort customization, see sorted() for their explanation).
list.reverse() Reverse the elements of the list in place.
list.copy() Return a shallow copy of the list. Equivalent to a[:].

In [12]: 

5.1. Using Lists as Stacks
The list methods make it very easy to use a list as a stack, where the last element added is the first
element retrieved (“last-in, first-out”). To add an item to the top of the stack, use append(). To retrieve
an item from the top of the stack, use pop() without an explicit index. For example:

Out[12]: 'pear'

fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
fruits.count('apple')

fruits.count('tangerine')

fruits.index('banana')

fruits.index('banana', 4) # Find next banana starting at position 4

fruits.reverse()
fruits

fruits.append('grape')
fruits

fruits.sort()
fruits

fruits.pop()

In [13]: 

5.2. Using Lists as Queues
It is also possible to use a list as a queue, where the first element added is the first element retrieved
(“first-in, first-out”); however, lists are not efficient for this purpose. While appends and pops from the
end of list are fast, doing inserts or pops from the beginning of a list is slow (because all of the other
elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from
both ends. For example:

In [14]: 

5.3 List Comprehensions
List comprehensions provide a concise way to create lists. Common applications are to make new lists
where each element is the result of some operations applied to each member of another sequence or
iterable, or to create a subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

In [15]: 

Note that this creates (or overwrites) a variable named x that still exists after the loop completes. We
can calculate the list of squares without any side effects using:

Out[13]: [3, 4]

Out[14]: deque(['Michael', 'Terry', 'Graham'])

Out[15]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

stack = [3, 4, 5]
stack.append(6)
stack.append(7)
stack

stack.pop()

stack

stack.pop()

stack.pop()

stack

from collections import deque
queue = deque(["Eric", "John", "Michael"])
queue.append("Terry") # Terry arrives
queue.append("Graham") # Graham arrives
queue.popleft() # The first to arrive now leaves

queue.popleft() # The second to arrive now leaves

queue # Remaining queue in order of arrival

squares = []
for x in range(10):
 squares.append(x**2)

squares

In [16]: 

which is more concise and readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero
or more for or if clauses. The result will be a new list resulting from evaluating the expression in the
context of the for and if clauses which follow it. For example, this listcomp combines the elements of
two lists if they are not equal:

In [19]: 

and it’s equivalent to:

In [20]: 

5.4 The del statement
There is a way to remove an item from a list given its index instead of its value: the del statement. This
differs from the pop() method which returns a value. The del statement can also be used to remove
slices from a list or clear the entire list (which we did earlier by assignment of an empty list to the slice).
For example:

In [21]: 

5.5 Dictionaries
Another useful data type built into Python is the dictionary (see Mapping Types — dict). Dictionaries are
sometimes found in other languages as “associative memories” or “associative arrays”. Unlike
sequences, which are indexed by a range of numbers, dictionaries are indexed by keys, which can be
any immutable type; strings and numbers can always be keys. Tuples can be used as keys if they
contain only strings, numbers, or tuples; if a tuple contains any mutable object either directly or
indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place
using index assignments, slice assignments, or methods like append() and extend().

Out[19]: [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Out[20]: [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Out[21]: []

squares = [x**2 for x in range(10)]

[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

combs = []
for x in [1,2,3]:
 for y in [3,1,4]:
 if x != y:
 combs.append((x, y))

combs

a = [-1, 1, 66.25, 333, 333, 1234.5]
del a[0]
a

del a[2:4]
a

del a[:]
a

It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-
separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is
also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given
the key. It is also possible to delete a key:value pair with del. If you store using a key that is already in
use, the old value associated with that key is forgotten. It is an error to extract a value using a non-
existent key.

Performing list(d) on a dictionary returns a list of all the keys used in the dictionary, in insertion order (if
you want it sorted, just use sorted(d) instead). To check whether a single key is in the dictionary, use
the in keyword.

In [22]: 

The dict() constructor builds dictionaries directly from sequences of key-value pairs:

In [23]: 

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value
expressions:

In [24]: 

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

In [25]: 

Out[22]: False

Out[23]: {'sape': 4139, 'guido': 4127, 'jack': 4098}

Out[24]: {2: 4, 4: 16, 6: 36}

Out[25]: {'sape': 4139, 'guido': 4127, 'jack': 4098}

tel = {'jack': 4098, 'sape': 4139}
tel['guido'] = 4127
tel

tel['jack']

del tel['sape']
tel['irv'] = 4127
tel

list(tel)

sorted(tel)

'guido' in tel

'jack' not in tel

dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])

{x: x**2 for x in (2, 4, 6)}

dict(sape=4139, guido=4127, jack=4098)

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time
using the items() method.

In [27]: 

When looping through a sequence, the position index and corresponding value can be retrieved at the
same time using the enumerate() function.

In [28]: 

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

In [29]: 

6. Files

6.1 Reading and Writing Files
open() returns a file object, and is most commonly used with two positional arguments and one
keyword argument: open(filename, mode, encoding=None)

In [30]: 

The first argument is a string containing the filename. The second argument is another string containing
a few characters describing the way in which the file will be used. mode can be 'r' when the file will only
be read, 'w' for only writing (an existing file with the same name will be erased), and 'a' opens the file
for appending; any data written to the file is automatically added to the end. 'r+' opens the file for both
reading and writing. The mode argument is optional; 'r' will be assumed if it’s omitted.

Normally, files are opened in text mode, that means, you read and write strings from and to the file,
which are encoded in a specific encoding. If encoding is not specified, the default is platform dependent
(see open()). Because UTF-8 is the modern de-facto standard, encoding="utf-8" is recommended

gallahad the pure
robin the brave

0 tic
1 tac
2 toe

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

knights = {'gallahad': 'the pure', 'robin': 'the brave'}
for k, v in knights.items():
 print(k, v)

for i, v in enumerate(['tic', 'tac', 'toe']):
 print(i, v)

questions = ['name', 'quest', 'favorite color']
answers = ['lancelot', 'the holy grail', 'blue']
for q, a in zip(questions, answers):
 print('What is your {0}? It is {1}.'.format(q, a))

f = open('workfile', 'w', encoding="utf-8")

unless you know that you need to use a different encoding. Appending a 'b' to the mode opens the file
in binary mode. Binary mode data is read and written as bytes objects. You can not specify encoding
when opening file in binary mode.

In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \r\n on
Windows) to just \n. When writing in text mode, the default is to convert occurrences of \n back to
platform-specific line endings. This behind-the-scenes modification to file data is fine for text files, but
will corrupt binary data like that in JPEG or EXE files. Be very careful to use binary mode when reading
and writing such files.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file

In [45]: 

If you’re not using the with keyword, then you should call f.close() to close the file and immediately free
up any system resources used by it.

Warning: Calling f.write() without using the with keyword or calling f.close() might result in the
arguments of f.write() not being completely written to the disk, even if the program exits
successfully.

6.2 Methods of File Objects
The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string
(in text mode) or bytes object (in binary mode). size is an optional numeric argument. When size is
omitted or negative, the entire contents of the file will be read and returned; it’s your problem if the file
is twice as large as your machine’s memory. Otherwise, at most size characters (in text mode) or size
bytes (in binary mode) are read and returned. If the end of the file has been reached, f.read() will return
an empty string ('').

In []: 

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is
only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while a blank
line is represented by '\n', a string containing only a single newline.

In []: 

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads
to simple code:

with open('workfile', encoding="utf-8") as f:
 read_data = f.read()

We can check that the file has been automatically closed.
#f.closed

f.read()

f.read()

f.readline()

f.readline()

f.readline()

In []: 

If you want to read all the lines of a file in a list you can also use list(f) or f.readlines().

f.write(string) writes the contents of string to the file, returning the number of characters written.

In []: 

Other types of objects need to be converted – either to a string (in text mode) or a bytes object (in
binary mode) – before writing them:

In []: 

f.tell() returns an integer giving the file object’s current position in the file represented as number of
bytes from the beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f.seek(offset, whence). The position is computed from adding
offset to a reference point; the reference point is selected by the whence argument. A whence value of
0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file
as the reference point. whence can be omitted and defaults to 0, using the beginning of the file as the
reference point.

In [52]: 

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file
are allowed (the exception being seeking to the very file end with seek(0, 2)) and the only valid offset
values are those returned from the f.tell(), or zero. Any other offset value produces undefined
behaviour.

File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

ESERCIZI
1. Write a program that asks the user for two numbers using the input function and shows the larger

of the two using the print function.
2. Write a program that asks the user for three numbers a, b, c and shows the largest among them.
3. Scrivi un programma che chieda all'utente una lista di numeri e fornisca in output il maggiore tra

tutti.

Out[52]: b'd'

for line in f:
 print(line, end='')

f.write('This is a test\n')

value = ('the answer', 42)
s = str(value) # convert the tuple to string
f.write(s)

f = open('workfile', 'rb+')
f.write(b'0123456789abcdef')

f.seek(5) # Go to the 6th byte in the file

f.read(1)

f.seek(-3, 2) # Go to the 3rd byte before the end

f.read(1)

Write a program that asks the user for a list of numbers and outputs the largest of all.
4. Write a simple program that, given a list of numbers, adds all the elements together. Tip: Even if

the sum() function exists, you could use the for loop to solve the exercise.
5. Write a program that, starting from an element and a list of elements, tells the output whether the

passed element is present in the list or not. If the element is present in the list, the program will
have to communicate the index of the element via the index method.

6. Write a simple function that, given a list of numbers, outputs a histogram based on these numbers,
using asterisks to draw it. Given for example the list [3, 7, 9, 5], the function must produce this
sequence:

7. Write a function that, given as input a list A containing n words, returns as output a list B of integers
representing the length of the words contained in A.

8. A MAC address (Media Access Control address) is a unique address associated by the
manufacturer with a chipset for wireless communications (e.g. WiFi or Bluetooth), consisting of 6
pairs of hexadecimal digits separated by colons. An example MAC is 02:FF:A5:F2:55:12. Write a
generate_mac() function that generates pseudo-random MAC addresses using the random
module.

9. Write a function that adds 10 user-entered colors to a list. The program must then ask the user to
enter a letter and output only the colors in the list that begin with that letter.

10. Write a function that takes a series of inputs from the user using a while loop and prints them with
the print function without wrapping. The while loop should stop when the user presses ENTER
without typing anything.

11. Write a function to which you will pass a string as a parameter, and which will print an inverse (in
reverse) version of the same string. For example "abcd" will become "dcba".

12. Write a simple rhyme function, which is passed a list of words as a parameter and receives a user-
entered word via function input. The rhyme function will have to compare the word entered by the
user with those present in the past list, looking for rhymes, understood as words whose last 3
letters are the same as the word entered by the user.

13. Write a function sell_books(), which helps in managing the sale of books in a bookstore: (i) Check
if the requested book is present on the shelves of the bookshop (ii) If the book is present, decrease
the number of copies (possibly removing the title) and inform us that the sale was successful (iii) If
the book is not available, it is placed on a list of books to order and we are notified that the sale
was unsuccessful

14. Write a "finder" function that scans a given system path for pdf-type files via the os module. The
function must have the following characteristics: (i) The path provided must first be validated, as it
must lead to an existing folder (ii) The function should provide a list of pdf files (with/relative/path)
as they are found (iii) Finally, the function must output the total number of .pdf files found during
the scan.

15. Write a function to which a word is passed and recognizes whether it is a palindrome (words that
are read the same even backwards) or not.

16. The Caesar Cipher is an encryption algorithm that consists of moving each letter a certain amount
of places in the alphabet. To use it, you choose a key that represents the number of places each
letter of the alphabet will be moved: for example, if you choose a key of 3, the letter A will become
D, the letter B will become E, and so on. To decipher a message encrypted with the Caesar cipher
you need to know the key used and move each letter backwards by a number of places
corresponding to the key. Write a function that takes a string and a number as arguments and
applies the Caesar Cipher to the string by moving as many positions in the alphabet as the number
says.

17. Write a program that, given the two lists of numbers below, create the matrix of their products and
print the result:
v1: 1,2,3,4,5
v2: 6,7,8,9,10
mat:

1*6 1*7 1*8 ...
2*6 2*7 2*8 ...
...

18. Write a program that, given two input matrices, prints a new matrix containing the sum of the i-th
elements only if they are even, otherwise the cube if they are odd

19. Implements the diag function, which given an n x n matrix as a list of lists, RETURNS a list
containing the elements of the diagonal (from the top left to the bottom right corner)

20. Write a program that calculates the Euclidean distance between two vectors of floating point
numbers entered by the user

Python language: Advanced Concepts (to be
explored further)

Errors and Exceptions: https://docs.python.org/3/tutorial/errors.html
(https://docs.python.org/3/tutorial/errors.html)
Classes: (https://docs.python.org/3/tutorial/classes.html)
Brief Tour of the Standard Library: https://docs.python.org/3/tutorial/stdlib.html
(https://docs.python.org/3/tutorial/stdlib.html)
Brief Tour of the Standard Library — Part II: https://docs.python.org/3/tutorial/stdlib2.html
(https://docs.python.org/3/tutorial/stdlib2.html)
Numpy library: https://www.w3schools.com/python/numpy/numpy_intro.asp

References
https://docs.python.org/3/tutorial/index.html (https://docs.python.org/3/tutorial/index.html)

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/stdlib.html
https://docs.python.org/3/tutorial/stdlib.html
https://docs.python.org/3/tutorial/stdlib2.html
https://docs.python.org/3/tutorial/stdlib2.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

